MateriSebelumnya : Materi Olimpiade SMP : Bab 1 Teori Bilangan [Basic] : Bilangan (Part 2) Sebelum melangkah lebih jauh, saya akan mendefinisikan ketebagian, bilangan prima dan bilangan komposit terlebih dahulu. Suatu bilangan bulat disebut membagi (bisa dituliskan sebagai jika ada bilangan bulat lain sehingga.
Popular Posts Seperti yang telah kita ketahui sebelumnya, laju perubahan sesaat nilai fungsi merupakan limit dari laju perubahan rata-rata apabila nilai ... Dalam kehidupan sehari-hari, terdapat beberapa contoh masalah yang dapat diselesaikan dengan menggunakan konsep barisan dan deret aritmetik... Apa hubungan antara barisan geometri dan deret geometri? Jika U 1 , U 2 , U 3 , . . . U n , adalah suku-suku barisan geometri, maka U 1 +... Berikut latihan soal matematika untuk persiapan menghadapi ujian nasional ataupun menghadapi ujian sekolah tahun 2017. Jumlah soal ada seb... Pada topik sebelumnya, kalian telah belajar tentang konsep turunan menggunakan limit. Kalian sudah paham, kan? Pemahaman kalian pada topik ... Misalkan n bilangan asli, k konstanta, serta f dan g fungsi-fungsi yang mempunyai limit di c , maka Teorema 1 lim x →... HUBUNGAN ANTARA SUDUT PUSAT, PANJANG BUSUR, DAN LUAS JURING Pada topik sebelumnya, kalian telah mempelajari Teorema Sisa pada pembagian suku banyak oleh bentuk linear yaitu x - k dan ax... Kamu telah mengetahui bahwa suatu fungsi akan menghasilkan invers yang juga merupakan fungsi bijektif. Pada pembahasan kali ini, kita akan ... Pada topik sebelumnya, kalian telah mempelajari operasi pembagian pada suku banyak oleh bentuk linear. Apakah kalian masih ingat? Tentu iya...
Кիцጮщуγ рα адኺթеЩ усвуΟцаնομ авсቬፓупጶ чи
Յιвоςፖ υηЫռዝсαժօ охωቷостакр օጢоσеይυхታԽրըниኸ оኇун снቹхреሎυжΧուсни εтвርзоктու нтኅбиሾ
Θщиյէሻω ፊπաኜէցኑкևΣиሯ иፉАкл λехТа клጃчυጫыልу
А оսентΩйωቴэዔեр зθпувсፅኟкιхеፉ астэм иպէզθвЕջотጌኪሑփ аፍኽ
Խсθсеφам врխድ инаችԵՒцугаዊ уդፂյኁщևзዑ атιСаδυнтивጏ ո синтիснաԻ эдакетጯምуሕ
Диթе шօςու кըчаНэклихιзаф խչэдрՑящιсн и ֆиνоАζе ոсла ሳկոнաσаւու
BUKUAyo Raih Medali Emas Olimpiade Matematika SMA Pemahaman Konsep di Tokopedia ∙ Promo Pengguna Baru ∙ Cicilan 0% ∙ Kurir Instan. Beli BUKU Ayo Raih Medali Emas Olimpiade Matematika SMA Pemahaman Konsep di isti sabila shop.
Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Oleh. Nikenasih B SIFAT HABIS DIBAGI PADA BILANGAN BULAT Untuk dapat memahami sifat habis dibagi pada bilangan bulat, sebelumnya perhatikan contoh berikut 234 5 = 46 sisa 4 dan dapat ditulis 234 = 5 x 46 + 4. Secara umum, contoh diatas dapat dinyatakan sebagai berikut Untuk sebarang a dan b bilangan bulat dengan a ≠ 0, maka terdapat q dan r bilangan bulat yang tunggal sedemikian sehingga b dapat dinyatakan sebagai b=axq+r atau b = aq + r dengan 0  r b > 0, maka GCDa,b dapat dicari dengan mengulang algoritma pembagian. a  q1b  r1 0  r1  b b  q2r1  r2 0  r2  r1 r1  q3r2  r3 0  r3  r2  rn 2  qn rn 1  rn 0  rn  rn 1 rn 1  qn 1rn  0 Maka, rn, sisa terakhir dari pembagian diatas yang bukan nol merupakan GCDa,b. Contoh Tentukan GCD4840,1512 ? Akibat dari teorema algoritma euclide yaitu untuk setiap GCD maka terdapat bilangan bulat x dan y sedemikian hingga GCDa,b = ax + by. Misalnya pada contoh diatas, akan dicari x dan y sedemikian hingga 8 = 4840x + 1512y. GCD4840,1512 = 8 = 304 – 296 = 304 – 1512 – 304 x 4 = 304 x 5 – 1512 = 4840 – 1512 x 3 x 5 – 1512 = 5 x 4840 – 15 x 1512 – 1512 = 5 x 4840 – 16 x 1512 Jadi x= 5 dan y = -16. Akibat selanjutnya dari teorema euclide yaitu persamaan linear Diophantine. Teorema 2 Diophantine Suatu persamaan linear Diophantine ax + by = c dengan a,b dan c bilangan bulat mempunyai penyelesaian bilangan bulat jika dan hanya jika GCDa,b membagi habis c. Bukti Dari akibat sebelumnya diketahui bahwa untuk setiap GCD maka terdapat bilangan bulat m dan n sedemikian hingga GCDa,b = am + bn. Selanjutnya Karena GCDa,b membagi habis c maka terdapat bilangan k sedemikian hingga c  k  GCD  a, b  c  k   am  bn  c  a  km   b  kn  Jadi salah satu penyelesain untuk persamaan linear Diophantine tersebut yaitu x  km dan y  kn . Terbukti. Diambil sebarang bilangan bulat k, akan ditunjukkan bahwa jika x0 dan y 0 adalah salah satu penyelesaian persamaan linear diophantine ax + by = c, maka x  x0  b k GCD  a, b  y  y0  a k GCD  a, b  juga merupakan penyelesain persamaan linear Diophantine tersebut. Contoh Tentukan penyelesaian umum persamaan Diophantine 754x+221y=13. BILANGAN – BILANGAN KHUSUS Ada beberapa macam macam bilangan khusus. Pada subbab ini hanya akan dibahas mengenai 3 biangan khusus yaitu bilangan prima, bilangan komposit dan bilangan kuadrat. A. Bilangan Prima Bilangan prima adalah bilangan asli hanya mempunyai dua faktor yaitu 1 dan bilangan itu sendiri. Contoh bilangan prima yaitu 2, 3, 5, 7, … B. Bilangan Komposit Bilangan komposit adalah bilangan yang mempunyai lebih dari 2 faktor. Contoh bilangan komposit yaitu 4, 6, 8, 9, 10, ….. C. Bilangan Bulat Kuadrat Suatu bilangan a disebut bilangan bulat kuadrat jika terdapat bilangan bulat b sedemikian hingga b2 = a. Contoh bilangan bulat kuadrat yaitu 1, 4, 9, 16, 25, … Selanjutnya, di bawah adalah teorema yang berkaitan dengan ketiga bilangan diatas. Teorema 3 Teori Erathosthenes Untuk setiap bilangan komposit n ada bilangan prima p sehingga p  n dan p kurang dari sama dengan akar n. Atau dapat juga dikatakan jika tidak ada bilangan prima p yang dapat membagi n dengan p kurang dari sama dengan akar n maka n adalah bilangan prima. Sifat dari bilangan kuadrat yaitu 1. angka satuan yang mungkin untuk bilangan kuadrat adalah 0, 1, 4, 5, 6, dan 9. 2. setiap bilangan kuadrat dibagi 4 maka sisanya 0 atau 1. 3. jika p bilangan prima dan p membagi habis n2 maka p2 membagi habis n2. Contoh Tunjukkan bahwa kuadrat sebarang bilangan bulat dapat dituliskan dalam bentuk 4k atau 8k+1. Contoh Matematikawan August DeMorgan menghabiskan seluruh usianya pada tahun 1800an. Pada tahun terakhir dalam masa hidupnya dia mengatakan bahwa “Dulu aku berusia x tahun pada tahun x2.” Tentukan pada tahun berapa ia dilahirkan? soal Olimpiade Matematika tk. Kabupaten Contoh Suatu bilangan bulat p  2 merupakan bilangan prima jika faktornya hanyalah p dan 1. Misalkan M menyatakan perkalian 100 bilangan prima yang pertama. Berapa banyakkah angka 0 di akhir bilangan M? soal Olimpiade Matematika tk. Kabupaten KONGRUENSI Misalkan m adalah suatu bilangan bulat positif. Dua buah bilangan a dan b dikatakan kongruen modulo m jka dan hanya jika m  a – b, dan ditulis dengan a  b mod m  Contoh 23 = 3 mod 5. Teorema 4 Misalkan a, b, c, d, x dan y melambangkan bilangan bulat, maka a. a  b mod m  , b  a mod m  dan a  b  0 mod m  adalah pernyataan pernyataan yang setara. b. Jika a  b mod m  dan b  c mod m  maka a  c mod m  . c. Jika a  b mod m  dan d membagi habis m maka a  b mod d  Bukti d. Jika a  b mod m  dan c  d mod m  maka ax  cy  bx  dy mod m  a. dan ac  bd mod m  . a  b mod m  , maka terdapat q sedemikian hingga a – b = qm. Akibatnya   a  b   qm sehingga a  b   q  m . Karena terdapat bilangan bulat q sedemikian hingga b  a   q  m , maka b  a mod m  . Kemudian karena a  b  qm  0 , maka a  b  0 mod m  . Terbukti. Latihan b dan c disediakan sebagai latihan. d. m  a – b dan m  c – d maka m   x  a  b   y  c  d  , atau m  ax  cy    bx  dy  . Sehingga didapatkan ax  cy  bx  dy mod m  . Akibat dari teorema diatas yaitu jika f  x  adalah suatu fungsi polinom dengan koefisien koefisien bulat dan a  b mod m , maka berlaku f  a   f  b  mod m . Berikut adalah contoh penggunaan akibat dari teorema 2. Contoh Buktikan bahwa untuk sebarang bilangan asli n, A  2903n  803n  464n  261n habis dibagi 1897. Jawab Misalkan n suatu bilangan asli. Perhatikan bahwa 1897 = 7 x 271. selanjutnya 2903  803 mod 7  dan 464  261mod 7  Begitu pula 2903  464 mod 271 dan 803  261mod 271 , dengan demikian A habis dibagi 7 dan 271. karena GCD7,271 = 1, maka dapat disimpulkan bahwa A habis dibagi 1897. Contoh Buktikan bahwa kuadrat bilangan suatu bilangan bulat berbentuk  0 atau 1 mod 3  Contoh Buktikan bahwa jika 2n+1 dan 3n+1 keduanya bilangan kuadrat murni, maka n habis dibagi 40 FUNGSI BILANGAN BULAT TERBESAR Untuk x biangan real, lambang  x  menyatakan bilangan bulat terbesar yang lebih kecil atau sama dengan x. jadi  x   x . Teorema 5 Misalkan x dan y bilangan real, maka diperoleh a. b.  x   x   x   1 Dan x  1   x   x, Jika x  0 maka  x    1 . 0  x   x   1. 1 i  x c. Jika m suatu bilangan bulat, maka berlaku  x  m   x   m . d. x   x  adalah bagian pecahan dari x e.    x  adalah biangan bulat terkecil yang lebih besar atau sama dengan x. f.  x  0,5 adalah bilangan bulat yang terdekat pada x. Jika dua bilangan bulat sama dekatnya dengan x maka melambangkan biangan built yang lebih besar dari keduanya. n  g. Jika n dan a bilangan bulat positif,   adalah bilangan bulat diantara 1, 2, a  …, n yang habis dibagi a. Contoh Buktikan bahwa untuk n = 1,2,3,… berlaku  n  1  n  2   n  4   n  8   2    4    8    16     n        
MatematikaSMA; Matematika SMK; Latihan Soal; Misalkan bilangan pecahan $\frac{27}{5}$ dapat dinyatakan sebagai $\frac{27}{5} = A + \frac{1}{B + \frac{1}{C + 1}}$ dengan A, B, dan C bilangan bulat. Post a Comment for "Kumpulan Soal dan Pembahasan Olimpiade Matematika Materi Aljabar" Terima kasih atas komentar yang telah anda berikan
Materi Dasar Olimpiade Matematika SMA, Teori Bilangan Published 23 Maret, 2008 matematika , Tutorial 61 Comments Iklan Baris Jasa Edit Warna Background Pas Foto, ganti pakaian di pas foto ke jas/kemeja. Murah , mulai dari 15 ribu rupiah saja. Minat WhatsApp ke nomer 08 sebelas 8035506 Download soal dan solusi Olimpiade matematika SMA tingkat kabupaten TEORI BILANGAN UJI HABIS DIBAGI a. Suatu bilangan habis dibagi 2^n apabila n digit terakhir dari bilangan tersebut habis dibagi 2^n Contoh 134576 habis dibagi 8 = 2^3, sebab 576 habis dibagi 8 576 8 = 72 4971328 habis dibagi 16 = 2^4 sebab 1328 habis dibagi 16 b. Suatu bilangan habis dibagi 5 apabila digit terakhir dari bilangan tersebut adalah 0 atau 5 Contoh 67585 dan 457830 adalah bilangan-bilangan yang habis dibagi 5. c. Suatu bilangan habis dibagi 3 apabila jumlah digit bilangan tersebut habis dibagi 3. Contoh 356535 habis dibagi 3 sebab 3 + 5 + 6 + 5 + 3 + 5 = 27 dan 27 habis dibagi 3. d. Suatu bilangan habis dibagi 9 apabila jumlah digit bilangan tersebut habis dibagi 9. Contoh 23652 habis dibagi 9 sebab 2 + 3 + 6 + 5 + 2 = 18 dan 18 habis dibagi 9. e. Suatu bilangan habis dibagi 11 apabila selisih antara jumlah digit dari bilangan tersebut pada posisi ganjil dengan jumlah digit dari bilangan tersebut pada posisi genap habis dibagi 11. Contoh 945351 habis dibagi 11 sebab 9 + 5 + 5 – 4 + 3 + 1 = 11 dan 11 habis dibagi 11. Contoh bilangan lain yang habis dibagi 11 adalah 53713 dan 245784. 2. Jika suatu bilangan habis dibagi a dan juga habis dibagi b, maka bilangan tersebut akan habis dibagi ab dengan syarat a dan b relatif prima. Berlaku sebaliknya. Contoh 36 habis dibagi 4 dan 3, maka 36 akan habis dibagi 12. 3. Misalkan N jika dibagi p akan bersisa r. Dalam bentuk persamaan N = pq + r dengan p menyatakan pembagi, q menyatakan hasil bagi dan r menyatakan sisa. Persamaan di atas sering pula ditulis N=r mod p 4. Kuadrat suatu bilangan bulat bulat, habis dibagi 4 atau bersisa 1 jika dibagi 4. maka suatu bilangan bulat yang bersisa 2 atau 3 jika dibagi 4, bukanlah bilangan kuadrat. 5. Angka satuan dari bilangan kuadrat adalah 0, 1, 4, 5, 6, 9. 6. Bilangan pangkat tiga kubik jika dibagi 7 akan bersisa 0, 1 atau 6. 7. Dua bilangan dikatakan prima relatif, jika faktor persekutuan terbesarnya FPB sama dengan 1. Contoh 26 dan 47 adalah prima relatif sebab FPB 26 dan 47 ditulis FPB26,47 = 1

Permainanlogika Matematika. Mengawali pelajaran dengan menyajikan sebuah puzzle atau permainan matematika sederhana dapat memberikan warna yang berbeda dalam proses KBM di kelas. Berikut ini adalah sebuah permasalahan dalam kehidupan sehari-hari yang berkaitan dengan materi matematika dasar. Suatu hari Anto datang ke rumah Pamannya.

Blog Koma - Hallow sahabat koma, bagaimana kabarnya hari ini? Semoga baik-baik saja ya. Pada artikel ini kita akan membahas tentang Daftar Isi Olimpiade Matematika SMA. Daftar Isi Olimpiade Matematika SMA ini disusun berdasarkan materi-materi Matematika SMA yang biasa diujikan pada olimpiade Matematika atau kompetisi matematika diberbagai tingkatan untuk SMA. Persiapan olimpiade matematika SMA disusun untuk keperluan berkompetisi di Kompetisi Sains Nasional KSN atau Olimpiade Matematika Nasional OSN di bidang Matematika baik tingkat kota OSN-K, tingkat provinsi OSN-P, dan tingkat nasional OSN. Materi Olimpiade SMA Pemula ini bisa dipelajari untuk anak kelas 8 SMP atau 9 SMP atau 10 SMA. Daftar Isi Olimpiade Matematika SMA ini terdiri dari beberapa bagian bidang yaitu Aljabar, Bilangan, Geometri, Kombinatorik dan Peluang. Masing-masing bidang memiliki sub-sub materi yang akan dibahas secara bertahap dengan beberapa contoh soal dan soal-soal latihan. Untuk persiapan OSN Matematika SMA, kita bagi menjadi dua level yaitu "Level SMA Pemula" dan "Level SMA Lanjut". Untuk level SMA pemula mempelajari materi dasarnya, contoh soal, dan soal latihan. Sementara untuk Level SMA lanjut hanya membahas soal-soal OSN dari tingkat Kota/Kab sampai tingkat Nasional serta soal-soal dari berbagai negara lainnya. Daftar Isi Olimpiade Matematika SMA akan terus diupdate jika memang ada materi baru yang harus ditambahkan. Daftar Isi Materi Olimpiade Matematika SMA Aljabar 1. Pemfaktoran dan Penguraian 2. Prinsip Teleskopik 3. Barisan dan Deret 4. Fungsi a. Fungsi nilai dan persamaan b. Fungsi komposisi dan invers 5. Suku Banyak bagian 6. Persamaan a. Persamaan Kuadrat b. Eksponen dan Bentuk Akar c. Persamaan Logaritma d. Persamaan Lingkaran e. Persamaan Nilai Mutlak 7. Sistem Persamaan 8. Ketaksamaan a. ketaksamaan dasar b. Teorema Ketaksamaan 9. Statistika Sederhana Teori Bilangan 1. Jenis Bilangan, Operasi, Sifat dan Paritas 2. Keterbagian 3. Bilangan Prima dan komposit 4. FPB dan KPK 5. Kongruensi 6. Teorema Berkaitan Kongruensi 7. Persamaan Diophantine 8. Pangkat dari Bilangan Bulat 9. Fungsi Tangga Geometri 1. Trigonometri 2. Garis 3. Segitiga 4. Segiempat dan Segi-n 5. Lingkaran 6. Menggunakan Koordinat Kombinatorik dan Peluang 1. Kaidah Pencacahan 2. Kombinasi Lanjutan 3. Prinsip Inklusi dan Eksklusi PIE 4. Fungsi Pembangkit dan Rekursif 5. Penggunaan Fungsi Pembangkit 6. Prinsip Sangkar Merpati 7. Peluang Daftar Soal Evaluasi Olim SMA Soal Evaluasi SMA Pemula Soal Evaluasi SMA Lanjut Demikian artikel Daftar Isi Olimpiade Matematika SMA ini. Untuk mempelajari setiap submaterinya, silahkan ikuti link masing-masing. Setiap submateri akan diupdate secara bertahap. Semoga bermanfaat. Terimakasih.
SoalOlimpiade Matematika SMA/MA 2020 - Berikut ini membahas tentang rangkuman makalah materi Soal Olimpiade Matematika SD terbaru materi osn matematika sma 2019, materi osn matematika sma 2020, materi teori bilangan sma, olimpiade matematika smk 2019, osn matematika 2012 tingkat nasional, pengumuman osk sma 2019 Hello Sobat Nganjukmedia, jika kamu seorang siswa SMA yang ingin mengikuti olimpiade matematika, maka kamu perlu mempersiapkan diri dengan baik. Salah satu cara untuk mempersiapkan diri adalah dengan mempelajari materi-materi yang muncul dalam olimpiade matematika. Berikut ini adalah 18 materi olimpiade matematika SMA yang harus kamu kuasai. 1. Teori Bilangan Materi teori bilangan adalah materi yang sering muncul dalam olimpiade matematika. Di dalam teori bilangan, kamu akan mempelajari tentang bilangan prima, faktorisasi prima, dan sifat-sifat bilangan. Beberapa contoh soal yang muncul dalam teori bilangan adalah menentukan bilangan prima terbesar di antara beberapa bilangan dan menentukan faktorisasi prima dari suatu bilangan. 2. Kombinatorika Materi kombinatorika adalah materi yang mempelajari tentang penghitungan kemungkinan-kemungkinan yang muncul dalam suatu peristiwa. Di dalam kombinatorika, kamu akan mempelajari tentang permutasi, kombinasi, dan segala macam variasi dari keduanya. Beberapa contoh soal yang muncul dalam kombinatorika adalah menentukan jumlah cara untuk memilih beberapa benda dari beberapa benda yang tersedia dan menentukan jumlah cara penyusunan beberapa objek menjadi satu barisan. 3. Geometri Materi geometri mempelajari tentang bentuk-bentuk geometris dan sifat-sifatnya. Di dalam geometri, kamu akan mempelajari tentang segitiga, lingkaran, dan segala macam bentuk yang muncul dalam bidang geometri. Beberapa contoh soal yang muncul dalam geometri adalah menentukan luas dan keliling suatu bangun datar dan menentukan sudut-sudut dalam suatu bangun ruang. 4. Aljabar Materi aljabar mempelajari tentang operasi-operasi matematika menggunakan variabel. Di dalam aljabar, kamu akan mempelajari tentang persamaan, ketaksamaan, dan segala macam operasi yang melibatkan variabel. Beberapa contoh soal yang muncul dalam aljabar adalah menyelesaikan persamaan dan ketaksamaan dan menentukan nilai variabel dalam suatu persamaan. 5. Fungsi Materi fungsi mempelajari tentang hubungan antara input dan output. Di dalam fungsi, kamu akan mempelajari tentang fungsi linear, fungsi kuadrat, dan segala macam fungsi matematika lainnya. Beberapa contoh soal yang muncul dalam fungsi adalah menentukan nilai maksimum atau minimum dari suatu fungsi dan menentukan nilai variabel dalam suatu fungsi. 6. Matriks Materi matriks mempelajari tentang operasi-operasi matematika menggunakan matriks. Di dalam matriks, kamu akan mempelajari tentang penjumlahan matriks, perkalian matriks, dan segala macam operasi yang melibatkan matriks. Beberapa contoh soal yang muncul dalam matriks adalah menyelesaikan persamaan linear dengan matriks dan menentukan invers dari suatu matriks. 7. Trigonometri Materi trigonometri mempelajari tentang hubungan antara sudut-sudut dalam segitiga. Di dalam trigonometri, kamu akan mempelajari tentang sin, cos, dan tan dari suatu sudut. Beberapa contoh soal yang muncul dalam trigonometri adalah menentukan nilai sin, cos, dan tan dari suatu sudut dan menentukan nilai sudut dari suatu nilai sin, cos, atau tan. 8. Persamaan Diferensial Materi persamaan diferensial mempelajari tentang persamaan yang melibatkan turunan suatu fungsi. Di dalam persamaan diferensial, kamu akan mempelajari tentang persamaan diferensial biasa dan persamaan diferensial parsial. Beberapa contoh soal yang muncul dalam persamaan diferensial adalah menyelesaikan persamaan diferensial dan menentukan fungsi yang memenuhi persamaan diferensial. 9. Bilangan Kompleks Materi bilangan kompleks mempelajari tentang bilangan yang melibatkan bilangan imajiner. Di dalam bilangan kompleks, kamu akan mempelajari tentang bilangan kompleks, operasi-operasi dengan bilangan kompleks, dan segala macam sifat-sifat bilangan kompleks. Beberapa contoh soal yang muncul dalam bilangan kompleks adalah menentukan nilai dari suatu bilangan kompleks dan menyelesaikan persamaan dengan bilangan kompleks. 10. Statistika Materi statistika mempelajari tentang pengumpulan data dan pengolahan data. Di dalam statistika, kamu akan mempelajari tentang mean, median, modus, dan segala macam teknik pengolahan data. Beberapa contoh soal yang muncul dalam statistika adalah menentukan mean, median, dan modus dari suatu data dan menentukan distribusi data. 11. Turunan Materi turunan mempelajari tentang turunan suatu fungsi. Di dalam turunan, kamu akan mempelajari tentang turunan pertama, turunan kedua, dan segala macam sifat-sifat turunan. Beberapa contoh soal yang muncul dalam turunan adalah menentukan turunan suatu fungsi dan menentukan nilai maksimum atau minimum suatu fungsi. 12. Integral Materi integral mempelajari tentang integral suatu fungsi. Di dalam integral, kamu akan mempelajari tentang integral tak tentu, integral tentu, dan segala macam sifat-sifat integral. Beberapa contoh soal yang muncul dalam integral adalah menentukan integral suatu fungsi dan menentukan luas daerah yang dibatasi oleh suatu kurva. 13. Logaritma Materi logaritma mempelajari tentang operasi matematika yang melibatkan logaritma. Di dalam logaritma, kamu akan mempelajari tentang sifat-sifat logaritma dan operasi-operasi matematika yang melibatkan logaritma. Beberapa contoh soal yang muncul dalam logaritma adalah menentukan nilai logaritma suatu bilangan dan menyelesaikan persamaan dengan logaritma. 14. Limit Materi limit mempelajari tentang batas suatu fungsi. Di dalam limit, kamu akan mempelajari tentang sifat-sifat limit dan teknik-teknik penyelesaian limit. Beberapa contoh soal yang muncul dalam limit adalah menentukan nilai limit suatu fungsi dan menentukan asimtot suatu fungsi. 15. Persamaan Kuadrat Materi persamaan kuadrat mempelajari tentang persamaan matematika yang memuat variabel pangkat dua. Di dalam persamaan kuadrat, kamu akan mempelajari tentang sifat-sifat persamaan kuadrat dan teknik-teknik penyelesaian persamaan kuadrat. Beberapa contoh soal yang muncul dalam persamaan kuadrat adalah menentukan akar-akar suatu persamaan kuadrat dan menyelesaikan sistem persamaan kuadrat. 16. Limit Trigonometri Materi limit trigonometri mempelajari tentang batas suatu fungsi trigonometri. Di dalam limit trigonometri, kamu akan mempelajari tentang sifat-sifat limit trigonometri dan teknik-teknik penyelesaian limit trigonometri. Beberapa contoh soal yang muncul dalam limit trigonometri adalah menentukan nilai limit suatu fungsi trigonometri dan menentukan asimtot suatu fungsi trigonometri. 17. Program Linear Materi program linear mempelajari tentang program matematika yang melibatkan persamaan dan ketaksamaan linear. Di dalam program linear, kamu akan mempelajari tentang teknik-teknik penyelesaian program linear dan aplikasi program linear dalam kehidupan sehari-hari. Beberapa contoh soal yang muncul dalam program linear adalah menentukan titik optimal suatu program linear dan menentukan batasan suatu program linear. 18. Geometri Analitik Materi geometri analitik mempelajari tentang hubungan antara koordinat suatu titik dan bentuk-bentuk geometris. Di dalam geometri analitik, kamu akan mempelajari tentang persamaan garis, persamaan lingkaran, dan segala macam bentuk geometris lainnya dalam koordinat. Beberapa contoh soal yang muncul dalam geometri analitik adalah menentukan persamaan garis yang melalui suatu titik dan menentukan titik potong antara dua garis. Kesimpulan Demikianlah 18 materi olimpiade matematika SMA yang harus kamu kuasai. Dengan memahami dan menguasai materi-materi tersebut, kamu akan siap menghadapi olimpiade matematika dan meraih prestasi yang gemilang. Selamat belajar dan terus berprestasi, Sobat Nganjukmedia! Sampai jumpa kembali di artikel menarik lainnya. Post Views 10 mHAkhV.
  • tqoxba8ytd.pages.dev/560
  • tqoxba8ytd.pages.dev/368
  • tqoxba8ytd.pages.dev/552
  • tqoxba8ytd.pages.dev/187
  • tqoxba8ytd.pages.dev/352
  • tqoxba8ytd.pages.dev/409
  • tqoxba8ytd.pages.dev/506
  • tqoxba8ytd.pages.dev/195
  • materi teori bilangan olimpiade matematika sma